Important Topics:
- Differentiability and Continuity
- Derivative and Tangent Line
- Local Linearity
- Rules of Differentiation (power rule, product rule, quotient rule, chain rule, trig derivatives, other transcendental function rules: e^x, $\ln x$, a^x
- Inverse functions and derivative properties
- Symbolic Differentiation

True or False

1. The slope of the tangent line to the differentiable function f at the point $(3, f(3))$ is $f'(3 + h) - f(3)$

2. If a function has derivatives from both the left and the right at a point, then it is differentiable at that point.

3. If a function is differentiable at a point, then it is continuous at that point.

4. If a function is continuous at a point, then it is differentiable at that point.

5. If $f'(c)$ and $g'(c)$ are zero and $h(x) = f(x)g(x)$, then $h'(c) = 0$

6. The second derivative is the rate of change of the first derivative.

7. When the velocity of an object is constant, then its acceleration is zero.

8. If f and g are differentiable functions of x and $h(x) = f(g(x))$, then $h'(x) = f'(g(x))g'(x)$.

9. The domain of $y = \sin^{-1} x$ is $-1 \leq x \leq 1$.

10. The derivative of $y = e^{2x}$ is $2(\ln 2)e^{2x}$

11. The speed of a particle at $t = c$ is given by the value of the velocity at $t = c$.

12. If y is a differentiable function of u, u is a differentiable function of v, and v is a differentiable function of x, then $\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dv} \cdot \frac{dv}{dx}$

13. If $y = \sqrt{1-x}$, then $y' = \frac{1}{2}(1-x)^{-\frac{1}{2}}$

14. It is possible to estimate the value of a function f at $x = a$ using $y = f'(a)(x-a) + f(a)$

15. The graph of f is given at right. State the x-values where the function is not differentiable.
16. If \(f(x) = e^x \), which of the following is equal to \(f'(e) \)?

A. \(\lim_{h \to 0} \frac{e^{x+h} - e^x}{h} \)
B. \(\lim_{h \to 0} \frac{e^{x+h}}{h} \)
C. \(\lim_{h \to 0} \frac{e^{x+h} - e^x}{h} \)
D. \(\lim_{h \to 0} \frac{e^{x+h} - e^x}{h} \)

17. \(\frac{d}{dx} \left(\frac{1}{x^3} - \frac{1}{x} + x^2 \right) \) at \(x = -1 \) is

A. 6
B. 2
C. 0
D. -4

18. Differentiate \(y = \frac{3}{4+x^2} \)

19. If \(f \) is a function where \(\lim_{x \to 3} \frac{f(x) - f(3)}{x-3} = 0 \), which of the following must be true?

A.) \(f(3) = 0 \)
B.) The limit of \(f(x) \) as \(x \) approaches 3 does not exist.
C.) The derivative of \(f \) at \(x = 3 \) is 0.
D.) \(f \) is not defined at \(x = 3 \).

20. \(\lim_{h \to 0} \frac{\tan(4(x+h)) - \tan(4x)}{h} \)

A.) 0
B.) \(4 \sec^2(4x) \)
C.) \(\sec^2(4x) \)
D.) \(4 \cot(4x) \)

21. \(\frac{d}{dx} (\ln e^{5x}) = \)

A.) \(\frac{1}{e^{5x}} \)
B.) \(\frac{5}{e^{5x}} \)
C.) 5x
D.) 5
22. Let \(f(x) = \frac{1}{4}x^3 + x - 1 \) and let \(g(x) = f^{-1}(x) \) the inverse of \(f(x) \). Then, \(g'(3) = \)

A.) \(\frac{4}{31} \) B.) \(\frac{1}{6} \)
C.) \(\frac{1}{4} \) D.) \(\frac{1}{3} \)

23. At \(x = 3 \), the function \(f(x) = \begin{cases} x^2 & , x < 3 \\ 6x - 9 & , x \geq 3 \end{cases} \) is

A.) undefined B.) continuous but not differentiable.
C.) differentiable but not continuous.
D.) both continuous and differentiable.

24. If \(H(x) = \sqrt{g(x)} \) and \(g(3) = 10 \) and \(g'(3) = 4 \). What is the value of \(H'(3) \)?

A.) \(\frac{1}{4} \) B.) \(\frac{1}{2\sqrt{10}} \)
C.) \(\frac{2}{\sqrt{10}} \) D.) 2

25. At what point on the graph of \(y = \frac{1}{2}x^2 \) is the tangent line parallel to the line \(2x - 4y = 3 \)

A) (2, 2) B) \(\left(\frac{1}{2}, -\frac{1}{2} \right) \)
C) \(\left(\frac{1}{2}, \frac{1}{8} \right) \) D) \(\left(1, -\frac{1}{4} \right) \)

26. Find the derivative of \(x^2 f(x) \)

A) \(2x f'(x) \) B) \(x[f(x) + 2f'(x)] \)
C) \(x^2 f'(x) \) D) \(x[f'(x) + 2f(x)] \)

27. A particle moves along the x-axis so that at any time \(t \) its position is \(x(t) = \frac{1}{2} \sin t + \cos(2t) \). What is the second derivative (acceleration) of the particle at \(t = \frac{\pi}{2} \)?

A. 0 B. \(\frac{7}{2} \) C. \(\frac{5}{2} \) D. \(\frac{3}{2} \)
28. For what point of the graph of \(y = x e^{-2x} \) is the tangent line horizontal?

A. \((-1, -e^2)\)
B. \((-\frac{1}{2}, -\frac{e^2}{2})\)
C. \((\frac{1}{2}, 0)\)
D. \((\frac{1}{2}, \frac{1}{2e})\)

29. Given that \(f(-3) = 4 \) and \(f'(-3) = 2 \), which of the following is the tangent line approximation of \(f(-3.1) \)?

A. 3.8
B. 3.9
C. 4.018
D. 4.1

30. Shown below is a table of values from two different differentiable functions \(f \) and \(g \). Use the table to find the value of each expression below. Show work for full credit.

<table>
<thead>
<tr>
<th>(x)</th>
<th>(f(x))</th>
<th>(f'(x))</th>
<th>(g(x))</th>
<th>(g'(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>-4</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>-1</td>
<td>2</td>
<td>-3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>-2</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>4</td>
<td>0</td>
<td>-1</td>
</tr>
</tbody>
</table>

A.) \(A(x) = f(x) - 3g(x) \) Find \(A'(2) \)
B.) \(B'(3) \) if \(B(x) = 3f \cdot g \)

C.) \(D'(1) \) if \(D(x) = \frac{1}{g(x)} \)
D.) \(H(x) = (g(f(x^2))) \) find \(H'(1) \)

E.) \(P'(3) \) if \(P(x) = \sin(g(x)) \)
F.) \(R(x) = \sqrt{f(x^2)} \) find \(P'(0) \)

G.) Find the equation of the tangent line of \(f(x) \) at \(x = 3 \)
H.) Find the tangent line approximation of \(f(2.9) \) given \(f(3) = 6 \)
UNIT 2 REVIEW KEY

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2. F</td>
<td>10. F</td>
<td>18. $y' = \frac{-6x}{(4+x^2)^2}$</td>
<td>26. D</td>
<td>30E. -1</td>
</tr>
<tr>
<td>7. T</td>
<td>15. ${-3, 0, 2, 4, 5}$</td>
<td>23. D</td>
<td>30B. -18</td>
<td></td>
</tr>
<tr>
<td>8. T</td>
<td>16. D</td>
<td>24. C</td>
<td>30C. $\frac{3}{4}$</td>
<td></td>
</tr>
</tbody>
</table>